单机单卡 MoE#
解读 by [AI布道Mr.Jin]
其实在DeepSeek-R1爆火之前,DeepSeek V2在我们行业就已经妇孺皆知了,它独特的MOE结构值得研究一下。这篇文章是基于 ZOMI酱 的这个视频写的:《使用昇腾NPU手撕MoE单机版代码!没想到如此简单!》。
通过《09MOECore解读》,我们知道了MOE的结构原理是什么样的,接下来看一下代码上是怎么实现的!
MOE计算代码#
下面是zomi酱课程中提供的完整代码:
import torch
import torch.nn as nn
import torch.nn.functional as F
class Expert(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super().__init__()
self.net = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, output_dim))
def forward(self, x):
return self.net(x)
class MoE(nn.Module):
def __init__(self, input_dim, num_experts, top_k, expert_capacity, hidden_dim, output_dim):
super().__init__()
self.num_experts = num_experts
self.top_k = top_k
self.expert_capacity = expert_capacity
# 路由网络
self.gate = nn.Linear(input_dim, num_experts)
# 专家集合
self.experts = nn.ModuleList(
[Expert(input_dim, hidden_dim, output_dim) for _ in range(num_experts)])
def forward(self, x):
batch_size, input_dim = x.shape
device = x.device
# 路由计算
logits = self.gate(x)
probs = torch.softmax(logits, dim=-1)
topk_probs, topk_indices = torch.topk(probs, self.top_k, dim=-1)
# 辅助损失计算
if self.training:
# 重要性损失(专家利用率均衡)
importance = probs.sum(0)
importance_loss = torch.var(importance) / (self.num_experts ** 2)
# 负载均衡损失(样本分配均衡)
mask = torch.zeros_like(probs, dtype=torch.bool)
mask.scatter_(1, topk_indices, True)
routing_probs = probs * mask
expert_usage = mask.float().mean(0)
routing_weights = routing_probs.mean(0)
load_balance_loss = self.num_experts * (expert_usage * routing_weights).sum()
aux_loss = importance_loss + load_balance_loss
else:
aux_loss = 0.0
# 专家分配逻辑
flat_indices = topk_indices.view(-1)
flat_probs = topk_probs.view(-1)
sample_indices = torch.arange(batch_size, device=device)[:, None]\
.expand(-1, self.top_k).flatten()
# 初始化输出
outputs = torch.zeros(batch_size, self.experts[0].net[-1].out_features,
device=device)
# 处理每个专家
for expert_idx in range(self.num_experts):
# 获取分配给当前专家的样本
expert_mask = flat_indices == expert_idx
expert_samples = sample_indices[expert_mask]
expert_weights = flat_probs[expert_mask]
# 容量控制
if len(expert_samples) > self.expert_capacity:
expert_samples = expert_samples[:self.expert_capacity]
expert_weights = expert_weights[:self.expert_capacity]
if len(expert_samples) == 0:
continue
# 处理专家计算
expert_input = x[expert_samples]
expert_output = self.experts[expert_idx](expert_input)
weighted_output = expert_output * expert_weights.unsqueeze(-1)
# 累加输出
outputs.index_add_(0, expert_samples, weighted_output)
return outputs, aux_loss
# 测试示例
if __name__ == "__main__":
input_dim = 5
output_dim = 10
num_experts = 8
top_k = 3
expert_capacity = 32
hidden_dim = 512
batch_size = 10
# add
device = torch.device("cpu")
moe = MoE(input_dim, num_experts, top_k, expert_capacity, hidden_dim, output_dim).to(device)
x = torch.randn(batch_size, input_dim).to(device)
moe.eval()
output, _ = moe(x)
print(f"Eval output shape: {output.shape}") # torch.Size([64, 256])
C:\Users\Administrator\jupyter-env\lib\site-packages\torch\_subclasses\functional_tensor.py:276: UserWarning: Failed to initialize NumPy: No module named 'numpy' (Triggered internally at C:\actions-runner\_work\pytorch\pytorch\pytorch\torch\csrc\utils\tensor_numpy.cpp:81.)
cpu = _conversion_method_template(device=torch.device("cpu"))
Eval output shape: torch.Size([10, 10])
接下来,我们把每一部分拆解进行解读。
初始化函数定义#
首先,定义了Expert类,也就是“专家”,可以看到,专家是由线性层和激活函数构成的简单模型。
然后开始定义MOE类。在初始化函数中,定义了这样几个变量:
self.num_experts:专家的数量,也就是上面提到的“并列线性层”的个数,训练后的每个专家的权重都是不同的,代表它们所掌握的“知识”是不同的。
self.top_k:每个输入token激活的专家数量。
self.expert_capacity:代表计算每组token时,每个专家能被选择的最多次数。
self.gate:路由网络,一般是一个线性层,用来计算每个专家被选择的概率。
self.experts:实例化Expert类,生成多个专家。
num_experts = num_experts
top_k = top_k
expert_capacity = expert_capacity
# 路由网络
gate = nn.Linear(input_dim, num_experts)
# 专家集合
experts = nn.ModuleList(
[Expert(input_dim, hidden_dim, output_dim) for _ in range(num_experts)])
前向计算逻辑#
接下来看一下forward函数。
首先是输入x,shape是(batch_size, input_dim),batch_size我们可以看作是token的数量,也就是序列长度。然后通过self.gate和softmax计算每个token在每个专家上的激活概率:
logits = gate(x)
probs = torch.softmax(logits, dim=-1)
print("probs: ", probs)
probs: tensor([[0.1105, 0.0906, 0.1629, 0.1508, 0.2257, 0.1269, 0.0388, 0.0938],
[0.0668, 0.1061, 0.0902, 0.1864, 0.2158, 0.1080, 0.0913, 0.1354],
[0.0482, 0.0661, 0.0373, 0.1738, 0.2768, 0.0696, 0.1436, 0.1845],
[0.1450, 0.0297, 0.0412, 0.1784, 0.2312, 0.1261, 0.0879, 0.1605],
[0.2216, 0.0650, 0.0464, 0.0996, 0.0547, 0.3725, 0.0915, 0.0487],
[0.1987, 0.0730, 0.1046, 0.0963, 0.0684, 0.3503, 0.0533, 0.0553],
[0.0512, 0.1033, 0.0112, 0.2495, 0.0582, 0.1068, 0.3491, 0.0707],
[0.1033, 0.1161, 0.0553, 0.2258, 0.1429, 0.1449, 0.1225, 0.0892],
[0.0377, 0.1224, 0.1002, 0.1947, 0.2121, 0.0792, 0.0942, 0.1596],
[0.0441, 0.1337, 0.0439, 0.1240, 0.1968, 0.1091, 0.2043, 0.1441]],
grad_fn=<SoftmaxBackward0>)
probs的打印结果如上:我们设置的batch_size是10,num_experts是8,所以probs是个10行8列的矩阵。
接着,再用topk算子把每个token的激活专家选出来:
topk_probs, topk_indices = torch.topk(probs, top_k, dim=-1)
print("topk_probs: ", topk_probs)
print("topk_indices: ", topk_indices)
topk_probs: tensor([[0.2257, 0.1629, 0.1508],
[0.2158, 0.1864, 0.1354],
[0.2768, 0.1845, 0.1738],
[0.2312, 0.1784, 0.1605],
[0.3725, 0.2216, 0.0996],
[0.3503, 0.1987, 0.1046],
[0.3491, 0.2495, 0.1068],
[0.2258, 0.1449, 0.1429],
[0.2121, 0.1947, 0.1596],
[0.2043, 0.1968, 0.1441]], grad_fn=<TopkBackward0>)
topk_indices: tensor([[4, 2, 3],
[4, 3, 7],
[4, 7, 3],
[4, 3, 7],
[5, 0, 3],
[5, 0, 2],
[6, 3, 5],
[3, 5, 4],
[4, 3, 7],
[6, 4, 7]])
topk_probs和topk_indices 的打印结果如上,因为我们设置的top_k=3,所以每个token都把排名前三的概率选出来了,同时topk_indices把这些概率对应的专家编号也选出来了。
self.training分支对应的是训练过程中计算损失函数的部分,我们后面再讲。
选择好专家后,就要开始计算了。计算规则是,对于每个token,假如它选择的专家是e1、e2、e3,概率分别是p1、p2、p3,那么这个token的计算结果就是p1xe1_out+p2xe2_out+p3xe3_out。
由于计算个体是每个专家,所以代码中用for循环遍历每个专家。我们以第0个专家为例,看看它的计算过程是怎样的。
首先需要确定0号专家的输入。由于不是每个token都选择了0号专家,所以不能把x直接作为输入,而是要确定一个下标向量idxes,把x[idxes]作为0号专家的输入,idxes的值就是激活了0号专家的所有token编号,那么怎么得到idxes呢?代码里面是这样做的:
首先计算一个mask(假设expert_idx=0):
flat_indices = topk_indices.view(-1)
expert_idx = 0
expert_mask = flat_indices == expert_idx
print(expert_mask)
tensor([False, False, False, False, False, False, False, False, False, False,
False, False, False, True, False, False, True, False, False, False,
False, False, False, False, False, False, False, False, False, False])
flat_indices是topk_indices平铺之后的向量。通过对比,可以看到expert_mask中True的位置和topk_indices中0的位置铺平之后是一致的,代表第0个专家被第4个和第5个token激活了。
而且expert_mask代表的含义是:只要它的第0-2的位置是True的话,就代表被第0个token激活了,只要它的第3-5的位置是True的话,就代表被第1个token激活了,以此类推,我们可以声明一个sample_indices向量:
sample_indices = torch.arange(batch_size, device=device)[:, None].expand(-1, top_k).flatten()
print(sample_indices)
tensor([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7,
8, 8, 8, 9, 9, 9])
再通过下面的代码就可以把idxes取出来了:
expert_samples = sample_indices[expert_mask]
print(expert_samples)
tensor([4, 5])
也顺便把概率权重取出来:
flat_probs = topk_probs.view(-1)
expert_weights = flat_probs[expert_mask]
print(expert_weights)
tensor([0.2216, 0.1987], grad_fn=<IndexBackward0>)
接着把输入取出来:
expert_input = x[expert_samples]
print(expert_input)
tensor([[-0.7454, -1.4269, -1.1833, -0.2611, 1.4887],
[-0.9482, -1.9723, -0.2507, 0.4739, 1.0142]])
再进行专家计算:
expert_output = experts[expert_idx](expert_input)
weighted_output = expert_output * expert_weights.unsqueeze(-1)
最后还需要把计算结果叠加到对应的token上面去:
outputs = torch.zeros(batch_size, experts[0].net[-1].out_features)
outputs.index_add_(0, expert_samples, weighted_output)
tensor([[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000],
[ 0.0145, -0.0041, 0.0212, -0.0435, -0.0893, -0.0695, -0.0123, -0.0462,
-0.1006, 0.0255],
[-0.0135, 0.0327, 0.0766, -0.0206, -0.0717, -0.0597, -0.0358, -0.0326,
-0.0773, 0.0074],
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000]], grad_fn=<IndexAddBackward0>)
完成上面的for循环之后,就把所有专家的计算任务完成了,通过index_add_的操作,把每个token的计算结果也汇总了。
损失函数#
损失函数包含2部分:专家利用率均衡和样本分配均衡。
首先是专家利用率均衡,如果每个专家被选择的概率相近,那么说明分配越均衡,损失函数越小:
importance = probs.sum(0)
importance_loss = torch.var(importance) / (self.num_experts ** 2)
然后是样本分配均衡,首先得到每个token、每个专家的分配概率矩阵:
mask = torch.zeros_like(probs, dtype=torch.bool)
mask.scatter_(1, topk_indices, True)
routing_probs = probs * mask
然后按照token维度(样本维度)求平均,得到每个专家被分配的token平均数量和平均概率:
expert_usage = mask.float().mean(0)
routing_weights = routing_probs.mean
两者相乘求和得到负载均衡损失:
load_balance_loss = self.num_experts * (expert_usage * routing_weights).sum()
样本分配越均衡,这个损失函数越小。举个例子,10个专家,10个样本,如果所有样本都分到1个专家,那么损失函数值为10x1+0+0...+0=10,如果平均分给10个专家,那么损失函数值为1x0.1+1x0.1+...+1x0.1=1。